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continuous asymmetric unit can be deduced in 0+, 0_ 
space. For these cases the limits in 0+ are from 0 to 
twice the translational symmetry in 0t or 03, whichever 
is larger. In the other instances where the asymmetric 
unit is not rectangular or not continuous, the asym- 
metric unit listed in Table 5 will contain some 
redundancy. A space-group-specific rotation-function 
computer program which only calculates the unique 
portions of the asymmetric units listed in Table 5 is 
certainly feasible. 

not choose asymmetric-unit limits the same as those 
listed in Tables 4 and 5, their choices are equivalent to 
ours. In a study which uses rotation space group 61, 
the space-group name is not given but the limits on 0+, 
02 and 0 which were used are consistent with our 
asymmetric unit (Schmidt, Herriott & Lattman, 1974). 

We wish to thank Dr Dick van der Helm for careful 
scrutiny of Jyh-Hwang Jih's PhD dissertation. Finan- 
cial support was provided by grant no. PCM77-27337 
from the National Science Foundation. 

Discussion 

The rotation function is now being applied widely to 
elucidate macromolecular structures. Rotation func- 
tions are calculated either in terms of Eulerian angles 
0~, 02, 03 as described by Rossmann & Blow (1962) or 
in the quasi-orthogonal angles /7+, 02 and 0 .  Some- 
times, if an internal symmetry axis can be anticipated, 
the spherical polar angles ~ and ~ and the azimuthal 
angle X are used. However, the symmetry of the 
rotation function is more difficult to define in this 
system. 

In several instances rotation-function space groups 
have been explicitly stated in the literature. These 
studies provide confirmation of our assignment of 
rotation-function space groups for space groups 12 
(Rossmann & Blow, 1962), 22 (Wishner, Ward, 
Lattman & Love, 1975), 24 (Tollin, Main & 
Rossmann, 1966), 31 (Lattman & Love, 1970; Ward, 
Wishner, Lattman & Love, 1975), 32 (Burnett & 
Rossmann, 1971) and 34 (Rossmann, Ford, Watson & 
Banaszak, 1972). Although many of these workers did 
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Abstract 1. Introduction 

The 46 black and white plane groups are well known. 
The corresponding colour groups with more than two 
colours are extremely numerous. We give a listing of 
the 935 groups with N colours for N lying between 2 
and 15 inclusive. 

Consider an n-dimensional space group G whose 
elements permute N colours transitively and let G~ be 
the subgroup keeping the first colour fixed. Then the 
index of G~ in G is N and the colours correspond 
naturally to the cosets. The effect of any member of G 
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under group multiplication on the cosets is the same as 
its effect on the colours. For these reasons a coloured 
space group with N colours is defined to be a pair G D 
G~ consisting of a space group G and a subgroup G~, 
which is also a space group, of index N. The pairs G D 
G~ and G' ~ G'~ are equivalent if there is an 
isomorphism between G and G' which maps G~ onto 
G'~. This implies that there is actually an affine 
transformation f such that G' = f G f  -~ and G'~ = 
f G ~ f  -~. If N = 2 then G ~ GI is called a black and 
white group. These definitions go back to Heesch and 
Shubnikov; they can be found (in slightly different 
form) in the paper of van der Waerden & Burckhardt 
(1961). 

There are two well known books by Shubnikov & 
Belov (1964) and by Loeb (1971) which discuss the 
case N = 2 in detail and which include coloured 
pictures illustrating various coloured place groups. 
Both give complete descriptions of the 46 black and 
white groups but for N = 2 the listings begun in these 
books are far from complete. In this paper we describe 
a method for obtaining a complete listing for any given 
value of N and give explicit results for all N up to 15. 
For further remarks on the significance of coloured 
groups in the enumeration of space groups and in the 
study of twinning we refer to Schwarzenberger (1980). 

Other recent work on coloured space groups by 
Senechal (1975) and Harker (1976) has led to the 
development of arithmetic algorithms for the deter- 
mination of coloured space groups. Senechal (1979) 
uses such an algorithm to count coloured plane groups 
for various values of N. When N is prime she shows 
that the number is 14, 15, 13, 16 when N = 5, 7, I 1, 1 
modulo 12 in agreement with our computations; when 
N is composite there were some discrepancies between 
our preliminary results even for N = 4. Meanwhile, 
Wieting (1980) has developed two quite different 
methods of computation: one using generators and 
relations for N < 5, and the other using pairs of plane 
ornamental groups for N < 60. Comparison of the 
preliminary results both of Senechal and of ourselves 
with the results of Wieting made us aware of several 
errors which have been corrected in the present version. 
We are grateful to Senechal and Wieting for their 
generous cooperation but accept sole responsibility for 
any errors which remain. 

2. The Hermann decomposition 

Let G D G~ be a coloured group and T ~ T~ the 
corresponding pair of lattices. These groups yield point 
groups H = G / T  and H~ = GI/T  1 with homo- 
morphisms 

0 - - , T  --,G ~ H  --, 1 
p ? ? ? 

O --, T1--, G I --, H I --, 1 

where vertical arrows denote embeddings of sub- 
groups. Following Hermann (1929) we call the 
coloured group G ~ G~ lattice equivalent if T = T~ and 
class equivalent if H = H~. The main result, which is 
due to Hermann and holds for arbitrary dimension n, 
is: 

Theorem. Any coloured group G ~ G l can be 
expressed uniquely as the composition of a lattice 
equivalent coloured group G ~ G' and a class 
equivalent coloured group G' ~ G~. 

Proof. A subgroup G' of G satisfies the required 
conditions if and only if it has lattice T and p(G ' )  = H I. 
There is one and only one subgroup with these 
properties, namely G' = p- i  (H1)" The pair G D G' is 
then lattice equivalent of index r and the pair G' ~ G~ is 
class equivalent of index s where r × s = N. 

Remark.  If two coloured groups are equivalent then 
so are their lattice equivalent and class equivalent parts. 
The converse is not true (see § 4). 

Table 1 lists the numbers of distinct coloured plane 
groups corresponding to various factorizations N = r × 
s for n = 2. An indication of the method used to obtain 
these results is given in § § 3 and 4. 

3. The lattice equivalent and class equivalent cases 

The lattice equivalent coloured groups G ~ G' are finite 
in number for given dimension n. To obtain the list tbr 
n = 2 it is sufficient to consider the possible pairs H 
H 1 of point groups. For completeness, and for use in 
§ 4, we list the 52 lattice equivalent coloured plane 
groups explicitly in Table 2. The class equivalent 
coloured groups G' ~ G1 depend on the possible pairs 
T D T~ of lattices. We consider these according to the 
Bravais type of T; the number which occur is infinite 
but is finite for given s. The groups G' ~ G~ which 
occur depend on the choice of integers p, q; in the 

Table 1. Number o f  coloured plane groups with 
N = r x s coloursfor N = 2 . . . .  , 15 

Lattice Class 
N equivalent Other equivalent Total 

2 (2xl )26  (Ix2)  20 46 
3 (3×1) 5 ( lx3)  18 23 
4 (4×1) 12 (2×2)46 ( lx4)  38 96 
5 (Ix 5) 14 14 
6 (6xl )  6 (3x2) 11 (2x3) 44 ( lx6)  29 90 
7 (t x 7) 15 15 
8 (8xl )  2 (4x2) 26 (2x4) 98 ( lxS) 44 170 
9 (3×3) 10 ( lx9)  30 40 

10 (2x5) 45 (1x10) 30 75 
11 ( l x l l )  13 13 

(6×2) 9 (2x6)98 (lx12)58 221 
12 (12×1) 1 (4×3)25 (3×4) 30 
13 (1 x 13) 16 16 
14 (2x7) 53 (lx14) 29 82 
15 (3x5) 10 ( lx15) 24 34 

Total 52 505 378 935 
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r=  2 G P2 
G' P1 
G Pmm 
G' Pm 
G P4mm 
G' P4 

r=  3 G P3 
G' PI 

r = 4 G Pmm 
G' P1 
G P4mm 
G' Pm 

r=  6 G P31m 
G' P1 

r = 8, 12 G P4mm 
G' PI 

Table 2. The 52 lattice equivalent groups G ~ G' 

Pm Pg Cm Pmm Pmg 
P1 P1 PI P2 P2 
Pmg Pmg Pgg P4mm P4gm 
Pm Pg Pg Pmm Pgg 
P4gm P31 m P3m 1 P6 P6mm 
P4 P3 P3 P3 P31 m 
P6 P3 lm P3m I P6mm 
P2 Cm Cm Cmm 
Pmg Pgg Cmm P4 P4mm 
PI P1 P1 PI P2 
P4gm P4mm P4gm P6mm 
Pg Cm Cm P3 
P3m 1 P6 P6mm P6mm P6mm 
PI P1 P2 Cml Clm 
P4gm P6mm 
PI PI 

Pgg 
P2 
Cmm 
Cm 
P6mm 
P3m 1 

P4gm 
P2 

Cram 
P2 
P4mm 
Cmm 
P6mm 
P6 

P4 
P2 
P4gm 
Cmm 

tabulations which follow, the symbol for G l is placed 
below the symbol for G' to indicate existence of the 
corresponding coloured group G' D G~. 

(i) T =  Pparallelogram 

Each sublattice P~ is determined by the highest 
common factor d = h.c.f.(p,q) of a factorization s = 
pq. For s < 15 the possible values of d are 1 (for all s), 
2 (for s = 4, 8, 12) and 3 (for s = 9). Each value of d 
gives two coloured groups: 

G ' =  P1 P2 

G 1 = P l  1 P12 

(ii) T = P rectangle (primitive orthogonal) 

Each primitive sublattice Pl compatible with re- 
flections is determined by a factorization s = pq and 
generators (p,0), (0q) with respect to orthogonal 
coordinates. If p ~ q there are eight coloured groups 
whereas if p = q there are five because of the 
equivalences marked ~: 

p, qodd Pml Plm Pgl Plg Pgm Pgm Pmm Pgg 

G' - ]p ,  qeven Pml Plm Pml Plm Prom Prom Prom Prom 

(p-qodd Pml Plm Pml Pig Prom Ping  Pmm Pmg 

G~ P,m ~ Pim Pig ~ Pig P~gm ~P~mg Ptmm Plgg. 

Similarly each centred sublattice C~ compatible with 
reflections is determined by a factorization s = 2pq and 
generators (2p,0), (0,2q), (p,q). I fp  4: q there are three 
coloured groups reducing to two i fp  = q: 

G' = Pml  P l m  Pmm 

G l = CI m ~ Clm C l m m  

(iii) T = C diamond (centred orthogonal) 

Each primitive sublattice P~ compatible with reflec- 
tions is determined by a factorization s = 2pq and 

generators (p,0), (0,q). I fp  4: q there are eight coloured 
groups reducing to five i fp  = q: 

G ' =  Cml C l m  Cml C l m  Cmm Cmm Cmm Cmm 

Gl = Pi m ~ Pt m Pig ~ Pig Plrng~ Plg m PI mm Pigg. 

Similarly each centred sublattice CI compatible with 
reflections is determined by a factorization s = pq 
where p,q have the same parity and generators (p,0), 
(0,q), (,t~o,½q). If p 4: q there are three coloured groups 
reducing to two i fp  = q: 

G' = Cml  C l m  Cmm 

G l = C l m ~ C l m  Clmm 

(iv) T = P square 

The possible sublattices invariant under rotations of 
order 4 are 

P, with generators (p,0), (0,p) and s = p2 

P~ with generators (2p,0), (0,2p), (p,p) and s = 2p 2 

Pl with generators (p,q), ( - q , p )  and s = p2 + q2, p ~: q 

of which only the first two are invariant also under 
reflections. In the range 2 < s < 15 the coloured groups 
which arise are: 

G' = P4 P4mm P4mm P4gm 

G~ = Pl 4 Pl4mm P~4gm Pl4gm 

s = 2 , 4 , 5 , 8 ,  2 , 4 , 8 , 9  2 , 4 , 8  9 
9, 10, 13 

(v) T = P hev, agonal 

The possible sublattices invariant under rotations of 
order 3 or 6 are (with generators now expressed relative 
to inclined axes) 
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P~ w i t h  g e n e r a t o r s  ( p , 0 ) ,  ( 0 , p )  a n d  s = p 2  

P I  w i t h  g e n e r a t o r s  ( 3 p , 0 ) ,  (0 ,3  p ) ,  ( p , p )  a n d  s = 3 p  2 

P I  w i t h  g e n e r a t o r s  (p ,q ) ,  ( - q , p  + q) a n d  
s = p2 + p q  + q2 ( p  4= q) 

o f  w h i c h  o n l y  t he  f i rs t  t w o  a r e  i n v a r i a n t  u n d e r  

r e f l e c t i o n s .  In  t he  r a n g e  2 < s _< 15 t he  c o l o u r e d  g r o u p s  

w h i c h  a r i se  a r e  

G ' = P 3  P31m P31m P3ml P3ml P6 P6mm 

G = P,3 Pl31m P,3ml Pl3ml P131m P16 Pl6mm 

s = 3 , 4 , 7 , 9 ,  4 ,9  3, 12 4 ,9  3, 12 3 , 4 , 7 , 9 ,  3 ,4 ,9 ,  12 
12, 13 12, 13 

T a b l e  3. N u m b e r  o f  c lass  e q u i v a l e n t  g r o u p s  G '  ~ G 1 w i th  s co lours  a r r a n g e d  a c c o r d i n g  to B r a v a i s  type  

G' T~ s =  2 3 4 5 6 7 8 9 10 11 12 13 14 15 

(i) PI* 
P2* 

(ii) Pm 

Prom* 

Pg 
Pmg 
Pgg 

(iii) Cm 

Cram* 

( i v )  P4 
P4mm 
P4gm 

(v) P3* 
P6 
P31m 
P3ml* 
P6mm 

Total 

P I  

C I 
PI 
C, 

e l  

Ci 
PI 
Cl 

1 1 2 1 1 1 2 2 1 1 2 1 1 1 

1 1 2 1 1 1 2 2 1 1 2 1 1 1 

3 2 5 2 6 2 7 -3  6 2 10 2 6 4 
1 - 2 - 2 - 3 - 2 - 4 - 2 - 

2 1 5 1 4 1 6 2 4 1 8 1 4 2 
1 - 1 - 1 - 2 - 1 - 2 - 1 - 

1 2 1 2 2 2 1 3 2 2 2 2 2 4 

2 2 2 2 4 2 2 3 4 2 4 2 4 4 
- 1 - 1 - 1 - 2 - 1 - 1 - 2 

2 - 4 - 4 - 6 - 4 - 8 - 4 - 

- 2 1 2 - 2 2 3 - 2 2 2 - 4 

3 - 4 - 4 - 7 - 4 - 8 - 4 - 

- 1 1 1 - 1 1 2 - 1 1 1 - 2 

1 - 1 1 - - 1 1 1 - - 1 - - 

2 - 2 - - - 2 1 . . . . . .  
. . . . . . .  1 . . . . . .  

- 1 1 - - 1 - 1 - - 1 1 - - 

- 1 1 - - 1 - 1 - - 1 1 - - 

- 1 1 . . . .  1 - - 1 - - - 

- I 1 . . . .  1 - - 1 - - - 

- 1 1 . . . .  1 - - 1 - - - 

2 0  18 38 14 29 15 44 30 30 13 58 16 29 24 

* Consult Table 4 before using this information in conjunction with Table 2. 

T a b l e  4. C o l o u r e d  g r o u p s  G'  D G 1 g i v i n g  i n e q u i v a l e n t  c o m p o s i t i o n s  G ~ G' 

G r G' ~ G~ s = 2 3 

Pm, Pg, Ping 2, 4 3 3 
Pmm, Pgg, Cram ] 
P4, P4mm, P4gm p 4, 8 2 2 
Cm 2 P1 D PI1 2 3 
P3, P31m, P3ml} 
P6, P6mm 3, 6, 12 1 2 

Prom, Ping 2 2 2 
Pmg 2 3 3 
Cmm, P4,P4mm, P4gm 2, 4 P2 D P t 2  3 2 
P6, P6mm 3, 6 2 2 

f . . ~  f l  

t a l J o r  s = 

4 5 6 7 

6 4 9 5 

4 3 5 3 

5 4 7 5 

3 2 3 2 

4 3 5 3 
6 4 9 5 
6 3 7 3 
7 2 6 2 

3 1 2 1 
3 0 2 0 
2 0 0 0 
3 0 3 0 

2 0 2 0 
4 0 4 0 
2 0 2 0 
2 2 0 2 

2 0 0 2 

0 0 0 0 
2 0 0 0 

Prom D P,mm 1 1 
Prom ~ P~mg 1 0 P4mm 2 
Prom D P~gg 0 0 
Prom ~ C~mm 2 0 

Cram D Pimm 1 0 
Cram D P~mg 2 0 P6mm 3 
Cmm D Ptgg 1 0 
Cmm ~ Clmm 0 2 

P6, P3 lm, P6mm 2, 4 P3 ~ P~3 0 2 

P3ml ~P i31m 0 2 P6mm 2 
P3ml ~ P~3ml 0 0 

, . . . ,  7 
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Table 5. N u m b e r  o f  c o l o u r e d  g r o u p s  G ~ GI wi th  N co lours  c o r r e s p o n d i n g  to each  p l a n e  g r o u p  G f o r  
N = 2 , . . . ,  15 

G N = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PI 1 1 2 1 1 1 2 2 1 1 2 1 1 1 
P2 2 1 3 1 2 1 4 2 2 1 3 1 2 1 
Pm 5 2 10 2 11 2 16 3 12 2 23 2 13 4 
Prnm 5 1 13 1 9 1 21 2 10 1 25 1 10 2 
Pg 2 2 4 2 5 2 7 3 6 2 11 2 7 4 
Pmg 5 2 11 2 11 2 19 3 12 2 26 2 13 4 
Pgg 2 1 4 1 4 1 7 2 5 1 9 1 5 2 
Cm 3 2 7 2 7 2 13 3 8 2 17 2 9 4 
Crnm 5 1 11 1 8 1 21 2 9 1 22 1 9 2 
/'4 2 0 5 I 2 0 9 1 4 0 9 1 3 0 
P4mrn 5 0 13 0 2 0 29 1 3 0 17 0 2 0 
P4gm 3 0 7 0 2 0 13 1 3 0 10 0 2 0 
P3 0 2 1 0 1 1 0 3 0 0 4 1 0 2 
P6 1 2 1 0 5 1 2 3 0 0 9 1 2 2 
P3 lm 1 2 1 0 5 0 2 3 0 0 7 0 2 2 
P3m I 1 2 1 0 4 0 1 3 0 0 7 0 1 2 
P6mrn 3 2 2 0 11 0 4 3 0 0 20 0 1 2 

Total 46 23 96 14 90 15 170 40 75 13 221 16 82 34 

Final ly,  count ing up the various ways  of expressing 
s = 2 , . . . , 1 5  in terms of p , q  we obtain the 378 
class equivalent  coloured plane groups enumera ted  in 
Table  3. 

4. The mixed case 

Previous sections have dealt with all coloured plane 
groups arising from factor izat ions N = r x s with r = 1 
(class equivalent,  s < 15) or s -- 1 (lattice equivalent). 
Unless N is prime there are further coloured groups to 
be obtained from a careful compar ison  of Table  2 and 
Table 3. Thus,  for each of  the 52 lattice equivalent  
coloured groups G ~ G '  listed in Table 2, we determine 
from Table 3 the number  of  possible class equivalent  
groups G '  D G~ so as to obtain the total  number  of 
composi t ions  G D G '  ~ G r There is one difficulty: it 
may  be necessary  to dist inguish between subgroups  G~ 
of  G '  which,  a l though equivalent  in G ' ,  are not 
equivalent  in G (that  is, the coloured groups G '  ~ Gt 
are equivalent  a l though the composi t ions  G ~ G~ are 
not). An example may  clarify this phenomenon.  
Cons ider  the lattice equivalent  coloured group P 6  ~ P 2  
of  index 3 from Table 2 and the unique class equivalent  
coloured group P2 D P~2 of  index 2 from Table 3. The 
group P6 defines centres of  rotat ion of order  six (6 
centres) and, between these, centres of rotat ion of  order 
two (2 centres). Which  of these occur  as 2 centres for 

the group P~2? Either a mixture of 6 centres and 2 
centres of P6 or else only 2 centres of P6,  giving two 
distinct coloured groups P6 ~ P~2. Note  that  it is not 
possible for the 2 centres of P~2 to consist  only of  6 
centres of  P6 (al though this can happen when P 2  ~ P~2 
is of index 4 instead of index 2). In this way we obtain 
the entry 2 in the column of Table  4 for s = 2. Other  
entries of Table  4 are obtained by a similar argument .  
By using Tables 2, 3 and 4 together we obtain the 
figures in the middle column of Table  1. 

For  any of the seventeen plane groups G we may,  
using Tables 2, 3 and 4, find the total number  of  
coloured groups G ~ G~ of index N = 2 , . . . ,  15. The 
results are listed in Table 5. 
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